An emerging class of interactive wearable cognitive assistance applications is poised to become one of the key demonstrators of edge computing infrastructure. In this paper, we design seven such applications and evaluate their performance in terms of latency across a range of edge computing configurations, mobile hardware, and wireless networks, including 4G LTE. We also devise a novel multi-algorithm approach that leverages temporal locality to reduce end-to-end latency by 60% to 70%, without sacrificing accuracy. Finally, we derive target latencies for our applications, and show that edge computing is crucial to meeting these targets.
Chen, Z., Hu, W., Wang, J., Zhao, S., Amos, B., Wu, G., Ha, K., Elgazzar, K., Pillai, P., Klatzky, R., Siewiorek, D., Satyanarayanan, M.
Proceedings of the Second ACM/IEEE Symposium on Edge Computing, Fremont, CA, October 2017